

Prof. Chadi Assi

Network Application Development Project A

Simple File Transfer Service

Develop a pair of client-server programs that communicate via Python stream sockets or any programming

language (such as Java) and simulate partially the file transfer protocol (FTP). The main purpose of these

client/server programs is to give the client the ability to download files from the server directory to the client

directory and upload files from the client directory to the server directory. We should be able to transfer any file

type such as txt, doc, jpg.

FTP contains two types of protocol user datagram protocol (UDP) and transmission control protocol (TCP). You should

implement both protocols for the project.

A typical FTP interaction between a client and a server is as follows:

• When starting, client program connects to the server.

• If connection is successful, the client program can transfer files to the server using the put command

and can retrieve files from the server using the get command. The client can also change the names of

the files in the server’s machine.

• The client program reads the user command, parses it, forms a message request according to the type of

command, and then sends this request to the server.

• The server is expected to receive the request, parse it and execute the command. Then the server is

expected to reply with an appropriate response message. The client should handle the incoming

response message.

• When the client quits, it closes the communication with the server. The server should keep listening

passively for new connection requests from other clients.

II. Protocol Description

The protocol that describes the interaction between the server and the client is a typical request-response

protocol.

II.1 User Commands
The user utilizes the commands shown in the table below to interface with the client in order to instruct the

client program to request a service from the server. The commands: put, get, change, help, and bye. The

following table shows a description of each instruction at the client side.

 User Commands Description

1. put filename This command instructs the client to send a put request to the

server in order to transfer a file from the client machine to the

server machine (see the section below for the format of the put

request)
Example: put file.txt

2. get filename This command instructs the client to send a get request to the

server in order to retrieve a file from the server machine to the

client machine. (see the section below for the format of the get

request)
Example: get file.txt

3. summary filename This command instructs the client to send a summary request to

the server in order to generate the statistical summary of a

specific file on the server side (The file contains just numbers).

The summary is the maximum, minimum, and average of the

numbers. The server will reply by generating a file containing the

maximum, minimum, and average and sending it to the client.

 Summary: get file.txt

4. change OldFileName NewFileName This command instructs the client to send a change request to

the server to rename a file at the server machine. (see the section
below for the format of the change request)

Project COEN 366

2 of 7

Example: change oldfile.doc newfile.doc

5. help This command instructs the client to send a help request to the

server to get a list of the commands that the server support. (see

the section below for the format of the help request)

Example: help

6. bye This command instructs the client to break the connection with

the server and exit.

II.2 Format of the Request Messages

The request message that the client sends to the server has the following format:

Operation code (opcode) / filename length Remaining bytes

1 byte (3bits for opcode / 5 bits for filename

length)
• 0 bytes in case of help request.

• Variable numbers of bytes in case of put, get, and change request.

The request’s 3-bit opcode encodes the type of the instruction requested; the table below describes how this

information is encoded:

Opcode Instruction Request Format

000 put filename File Data

FS Bytes

Opcode: last 3 bits (of the first byte) specify the request operation code. For put the

binary value of these bits is 000

Filename Length (FL): first 5bits (of the first byte) specify the length of the name of the

file. The name of the file should not exceed 31 characters including the end of string

character. For example, if the filename is example.doc then FL value is 12.

File Name: FL bytes specify the name of the transferred file.

File Size (FS): 4 bytes that specify the size of the file.

File Data: FS bytes containing the file itself. It can be sent as chunks of data.

001 get filename

Opcode: last 3 bits (of the first byte) specify the request operation code. For get the

binary value of these bits is 001

Filename Length (FL): first 5bits (of the first byte) specify the length of the name of the

file. The name of the file should not exceed 31 characters including the end of string

character.

File Name: FL bytes specify the name of the retrieved file.

Opcode Filename

Length (FL)
FileName File Size (FS)

b7b6b5 b4b3b2b1b0 FL bytes 4Bytes

Byte 1 From Byte 2 to

Byte FL+1

From Byte FL+2

to Byte FL+5

Opcode Filename
Length (FL)

FileName

b7b6b5 b4b3b2b1b0 FL bytes

Byte 1 From Byte 2 to

Byte FL+1

COEN 366 Project

3 of 7

010 Change

oldFilename

newFilename

Opcode: last 3 bits (of the first byte) specify the request operation code. For change the

binary value of these bits is 010

oldFilename Length (OFL): first 5bits (of the first byte) specify the length of the old

name of the file. The name of the file should not exceed 31 characters including the end

of string character.

Old File Name: OFL bytes specify the name of the file to be changed.

newFilename Length (NFL): 1 byte specifies the length of the new name of the file.

The name of the file should not exceed 31 characters including the end of string

character.

newFilename: : NFL bytes specify the new name of the file.

011 Summary

filename

 Opcode: last 3 bits (of the first byte) specify the request operation code. For get the

binary value of these bits is 011

Filename Length (FL): first 5bits (of the first byte) specify the length of the name of the

file. The name of the file should not exceed 31 characters including the end of string

character.

 File Name: FL bytes specify the name of the file that you should get the maximum,

minimum, and average for its numbers.

100 Help

Opcode: last 3 bits (of the first byte) specify the request operation code. For change the

binary value of these bits is 100

II.3 Format of the Response Messages

The response message that the server sends back to the client has the following form:

Response code (res-code) Data

3 bits n bytes in case of response for correct get and correct help request.

0 bytes otherwise.

The table below describes the format of the possible response messages:

Res-code Mnemonic Response Message Format

000 Response

for correct

put request

and correct

change

request

Res-code: last 3 bits (of the first byte) specify the response message code. To

acknowledge correct put and change requests, the binary value of these bits is 000.

Opcode oldFilename
Length
(OFL)

oldFilename newFilename

Length (NFL)
newFilename

b7b6b5 b4b3b2b1b0 OFL bytes 1 Byte NFL Bytes

Byte 1 From Byte 2 to

Byte OFL+1
Byte OFL+2 From Byte OFL+3 to

Byte OFL+NFL+3

Opcode unused

b7b6b5 b4b3b2b1b0

Byte 1

res-code unused

b7b6b5 b4b3b2b1b0

Byte 1

Opcode Filename
Length (FL)

FileName

b7b6b5 b4b3b2b1b0 FL bytes

Byte 1 From Byte 2 to

Byte FL+1

Project COEN 366

4 of 7

Res-code Mnemonic Response Message Format

001 Response

for correct

get request

File Data

FS Bytes

Res-code: last 3 bits (of the first byte) specify the response message code. To

acknowledge a get request when everything is correct, the binary value of these bits is

001

Filename Length (FL): first 5bits (of the first byte) specify the length of the name of the

retrieved file. The name of the file should not exceed 31 characters including the end of

string character.

File Name: FL bytes specify the name of the retrieved file.

File Size (FS): 4 bytes that specify the size of the file.

File Data: FS bytes containing the file itself. It can be sent as chunks of data.

010 Statistical

Summary

Res-code: last 3 bits (of the first byte) specify the response message code. To

acknowledge a summary request when everything is correct, the binary value of these

bits is 010

Filename Length (FL): first 5bits (of the first byte) specify the length of the name of the

generated summary file. The name of the file should not exceed 31 characters including the

end of string character.

File Name: FL bytes specify the name of the summary file.

File Size (FS): 4 bytes that specify the size of the file.

 File Data: FS bytes containing the file itself. It can be sent as chunks of data

011 Error-File

Not Found

Res-code: last 3 bits (of the first byte) specify the response message code. To

acknowledge get request when the requested file is not found, the binary value of these

bits is 011.

100 Error-

Unknown
request

Res-code: last 3 bits (of the first byte) specify the response message code. When the

received request is not supported by the server, the binary value of these bits is 100.

101 Response

for

unsuccessf

ul change

Res-code: last 3 bits (of the first byte) specify the response message code. When the

received change request fails, the binary value of these bits is 110.

Res-code Filename
Length (FL)

FileName File Size (FS)

b7b6b5 b4b3b2b1b0 FL bytes 4 Bytes

Byte 1 From Byte 2 to
Byte FL+1

From Byte FL+2
to Byte FL+5

Res-code Filename

Length (FL)
FileName File Size (FS)

b7b6b5 b4b3b2b1b0 FL bytes 4 Bytes

Byte 1 From Byte 2 to

Byte FL+1

From Byte FL+2

to Byte FL+5

res-code unused

b7b6b5 b4b3b2b1b0

Byte 1

res-code unused

b7b6b5 b4b3b2b1b0

Byte 1

res-code unused

b7b6b5 b4b3b2b1b0

Byte 1

COEN 366 Project

5 of 7

110 Help-

response

Res-code length Help Data

b7b6b5 b4b3b2b1b0 length bytes

Byte 1 From Byte 2 to Byte length+1

Res-code: last 3 bits (of the first byte) specify the response message code. To

acknowledge a help request, the binary value of these bits is 110.

Length : first 5bits (of the first byte) specify the length of the help data. It should not

exceed 31 characters including the end of string character.

HelpData: length bytes contain a list of the supported commands.

III. Client/Server Description

1. The server program listens to the port specified as command line argument 1, accepts request messages

from a client programs, decodes these messages, performs the required computation, and returns the

result of the computation in a response message.

2. When starting the client program, the user provides the server IP address and port number as

command line arguments 1 and 2

3. Both client and server programs should support another command line argument as a debug flag that

turns on/off printing of the messages sent and received. 0 means Debug mode is OFF 1 means Debug

mode is ON.

4. The client program establishes a connection with the server and then waits for the user to enter a

command. The program checks the command and forms the appropriate request message and sends it

to the server. The server performs the needed computation and responds back to the client. The client

handles the response messages from the server.

5. Open the Wireshark while running the client-server program, and capture the packet that is sent from

server to the client. To recognize the packets that are being transferred from the server program, check

the source and destination addresses. The source and destination address will be 127.0.0.1 as you are

using localhost and answer the following questions:

For TCP:

• What is the sequence number of the TCP SYN segment that is used to initiate the TCP

connection between the client and server? What is in the segment that identifies as a

SYN segment?

• What are the sequence numbers of the first two segments in the TCP connection? At what time was each

segment sent? When was the ACK for each segment received? Given the difference between when each

TCP segment was sent, and when its acknowledgment was received, what is the RTT value for each of

the two segments? Build the round-trip time graph.

• What is the length of each of the first six TCP segments?

• What is the minimum amount of available buffer space advertised at the received

for the entire trace? Does the lack of receiver buffer space ever throttle the sender?

• Are there any retransmitted segments in the trace file? What did you check for (in the trace) in

order to answer this question?

• How much data does the receiver typically acknowledge in an ACK? Can you

identify cases where the receiver is ACKing in every other received segment.

• What is the throughput (bytes transferred per unit of time) for the TCP connection?

Explain how you calculated this value

• Use the Time-Sequence-Graph (Stevens) plotting tool to view the sequence

number versus time plot of segments being sent from the client to the

server.

For UDP:

• Select one UDP packet from your trace. From this packet, determine how many fields there are in

the UDP header. Name these fields.

• By consulting the displayed information in Wireshark’s packet content field for

this packet, determine the length (in bytes) of each of the UDP header fields

• The value in the Length field is the length of what? Verify your claim with your captured UDP

packet.

Project COEN 366

6 of 7

myftp>Press 1 for TCP, Press 2 for UDP myftp>

Provide IP address and Port number

myftp> Session has been established. myftp>help

Commands are: bye change get help put summary

myftp>get file1.txt

file1.txt has been downloaded successfully.

myftp>put file2.txt

file2.txt has been uploaded successfully.

myftp>change file2.txt file3.txt

file2.txt has been changed into file3.txt.

myftp> get summary.txt

summary.txt has been downloaded successfully.

myftp>bye

Session is terminated.

$

• What is the maximum number of bytes that can be included in a UDP payload?

• What is the protocol number for UDP? Give your answer in both hexadecimal and

decimal notation.

• Examine a pair of UDP packets in which your host sends the first UDP packet and

the second UDP packet is a reply to this first UDP packet. (Hint: for a second

packet to be sent in response to a first packet, the sender of the first packet should

be the destination of the second packet). Describe the relationship between the

port numbers in the two packets.

6. The client accepts input lines that consist of one request. User commands are:

o put filename

o get filename

o summary filename

o change oldfilename newfilename

o help

o bye

Example (at the client side

COEN 366 Project

7 of 7

IV. Submission
You shall submit a design document, the source files of your two programs:

• The design document should reflect your high-level implementation design of the client and

server programs. For example, it can describe function prototypes and algorithms for each

program and also document the experiment you have done with Wireshark and take

screenshots and provide RTT and time sequence graph.

• For the code, you shall submit a single archive file (a zipped file) named yourID-coen-366-

prj.zip via Moodle. It must contain the files that make up your programming assignment.

You should also include a plain text file, README, that describes how to run and test your programs.

The archive should also include a tests directory that contains at least two test files.

Make sure that all of your files start with a block of comments that gives your names, student-ids, user-ids, and

the purpose of the file. Include in this block comment a statement asserting that you are the sole author of the

file.

Any detected copying will not be tolerated and necessary measures will be taken.

